
List of Contents

1 Release Notes to SamVS V5.00...3

2 New User Interface...4

3 Project Tree..5

4 Scintilla Code Editor..6
4.1 Scintilla Highlight Editor...7

5 Debugging..9

6 Memory View...10

7 Expression Parser...11
7.1 Lexical elements..12

SamVS-C – Integrated Development System
Version 5.00 - Rev: 07/10/2019 - © DREAM S.A.S.

SamVS-C V5.00
Release Notes

1 Release Notes to SamVS V5.00
SamVS V5.00 comes in a completely renovated user interface, this document describes
briefly what had changed and what new features have arrived. While this is a significant
change, the overall use and workflow did not change. The experienced SamVS user should be
able to continue business without reading this document, at the potential cost to miss some
new features.

The most obvious changes are:

• Renovated user interface supporting display themes and document tabs.
• Using Scintilla code editor with customizable syntax highlighting, code folding,

inlined compiler messages, brace matching, word highlighting and many more.
• Hierarchical project layout.
• Memory View (aka “QuickView”) dialog displays structure contents and allows edits.
• Expression hovering provides more details.

This release includes several fixes and enhancements as well:

• Watches properly expand structures and pointers, even from pointers in registers.
• Memory View allows to edit values (like the watches do) and no longer requires a

warning for large dumps.
• Search phrases now kept in least recently used (LRU) lists.
• Syntax highlight also for assembler.
• P16 breakpoints survive text edits.
• Code editor handles large files much better.
• P24 debugging supports modification of P24 registers and preserves breakpoints

which are automatically set whenever SamVS detects a reload of P24 program.
• Various performance enhancements.

The following pages describe those changes in much more detail.

SamVS-C V5.00 Release Notes 2
© DREAM S.A.S. 2006-2019

2 New User Interface
The most significant change in user interface is obviously the new tab navigation for
documents on top of the edit area:

This effectively eliminates the former Window menu along with the window selection dialog.
If you have more documents open than tabs fit into the window, you’ll have the
alphabetically sorted window list available on the button at the top right.

Along with the mouse navigation using the tabs or the list, you may still sweep through the
open documents using Strg+Tab resp. Shift+Strg+Tab key combinations in least recently used
order.

You’ll notice that the document tabs do intentially not update with the LRU order, so they
seem to jump around when tabbing through the documents. However, if you save and load a
project, tabs are restored from the LRU list.

Another obvious change can be found in the View menu, where you now have the option to
select between various color themes for the overall layout and different editor color schemes
to adjust SamVS to match your personal preferences.

And finally the dockable bars now resize with the window frame and may dock in more
combinations than before.

SamVS-C V5.00 Release Notes 3
© DREAM S.A.S. 2006-2019

3 Project Tree
If you need to manage larger projects, the new project management may be pretty helpful.
Instead of holding all project files in a linear list, you now have the option to organize the
project’s sources in a hierarchical tree, as you see in the screenshot.

This is a logical structure only and does neither affect
the physical location of your source files nor the build
process.

SamVS does not expect any specific structure, so you
may build any hierarchy which best fits to your
project.

To add such a project folder simply use Add Project
Folder from the context menu and give it any name.
Then move some files onto that folder using
drag&drop.

You’ll notice that the first file drops into the folder but the second will not until you open the
folder clicking on the plus sign. This is intentional behavior since you may want to sort
something behind a folder (when it is closed) and an empty folder can not be opened. So
when dropping an item onto an empty folder it will be placed inside.

Of course you may place folders inside folders, as you can see from the screenshot and move
around a complete subtree to a different location.

Deleting a folder is possible from the context menu as well (or pressing DEL on a folder). This
operation only “pulls” the folder from the hierarchy so all contained nodes will occur on the
previous folder location.

File locations and open status will be preserved in your project, but folders are always sorted
on top. The previous sort functions from the context menu are no longer necessary and are
no longer available.

Toggling the ignored state is still possible from the context menu, but the tree view does no
longer allow to select multiple items. So toggling multiple entries may become a tedious
task. In case you frequently need to toggle same elements you may place them into a project
folder and then toggle the folder instead.

As a quick alternative you may use the keyboard for tree navigation and manipulation. Left
and right cursor keys close resp. open a tree node, up and down move, well, up and down.
Pressing # will toggle ignore state and DEL may remove an item from the project.

SamVS-C V5.00 Release Notes 4
© DREAM S.A.S. 2006-2019

4 Scintilla Code Editor
When it comes to code editing, the new Scintilla (www.scintilla.org) code editor is the most
significant enhancement. It not only provides highly efficient and configurable syntax
highlighting, but also features some quite useful other functions:

• Code Folding
Scintilla understands the document structure and allows to collapse parts of your
document for better visibility. By default blocks are considered to begin and end at
curly braces or preprocessor conditionals. For assembler sourcefiles any
XFUNC/LFUNC is considered a code block which can be folded away.

• Line Numbers
Sometimes it may be helpful to have line numbers next to the code, its rather easy
to have them with Scintilla, or turn it off, if not needed.

• Brace matching
Ever wondered if braces on more complex statements match? Scintilla automatically
highlights matching braces or display them red if unmatched.

• Word highlighting
Sometimes it may be handy to highlight occurrences of the same word in your
document, to see where a variable is used. Just double click on a word for this.

• Block operations
Of course Scintilla supports block operations. You may select an area (instead of a
couple of lines) or just a column while holding the ALT key. You may then cut/copy
and paste such a block or just press TAB to indent.

• Inline annotations
Scintilla allows to insert annotations to code lines which is used to duplicate build
errors and warnings right at the text location.

• Find and Replace using regular expressions
Similar to the find in files functionality, you now may also use regular expressions in
document-wide find and replace operations. Another nice feature is to limit a
replace operation to only a selected portion of text.

• Undo and Redo over save points
Undo history no longer cleared when saving a file. As long as the documents stays
open in a SamVS session, you may undo text edits even after debugging.

SamVS-C V5.00 Release Notes 5
© DREAM S.A.S. 2006-2019

https://www.scintilla.org/

4.1 Scintilla Highlight Editor

The configuration possibilities of Scintilla are too complex to fit into a comfortable user
interface without loosing flexibility. So SamVS provides an interactive configuration editor to
modify existing or even build your own styles:

Its probably out of scope to explain all possibilities, but the included templates should
contain enough comments to find your way through the massive amount of options.

You’ll find the editor in the View→Syntax Highlight menu, it will load with the currently
selected style. The upper editor is an editable preview of some text (you may switch
language from the dropdown on the right) and the lower contains the configuration
properties (to match the semantic from Scintilla.org).

Properties are basically hierarchical, so something assigned to a property “font” will affect
any font, something assigned to “font.comment” will only affect fonts used in comments.
Properties may contain a wildcard as well, so “style.*.34” defines brace highlighting for any
language.

Please note that various highlight styles are defined by numbers. Check out the comments in
the predefined styles whats supported.

SamVS-C V5.00 Release Notes 6
© DREAM S.A.S. 2006-2019

Various aspects may be assigned to such properties:

• font:<fontTypeface>
typeface is the actual name of the font like “Arial” or “Consolas”

• size:<fontPixelHeight>
the size of a font in pixels. Yes, you are free to specify different fonts and sizes for
any aspect.

• fore:<colourForeground>
Colour used for the text.

• back:<colourBackground>
Colour used for the background of the text.

• <number>
Just a number, use depends on the property.

• $(<property>)
Refers to another property. This brings in the power for controlling many properties
from just a few.

• <wordlist>
Wordlists are basically space separated identifiers, which are used for keyword
highlighting. You’ll find examples at the end of the provided styles. If you need a
word which does not look like an identifier (i.e. contains symbols, spaces or similar),
enclose it in double quotes.

When editing the style code, you’ll get an instant feedback in either the preview window or,
in case of errors, as annotated lines in the code editor.

If you are happy with your modifications, just press Save and Apply (or use save from the file
menu). Your personal styles need to go into the config folder next to bin, where SamVS.exe
resides. The save dialog takes care of that.

SamVS-C V5.00 Release Notes 7
© DREAM S.A.S. 2006-2019

5 Debugging
Another big improvement can be seen when you start a debugging session. The watch
windows now not only follow structured data through levels and pointers, you may use
typecasts as well to interpret any address or literal data as a pointer to something special.
This does work with registers as well, as you may see here:

The snippet stops in the listfile where register R2 is loaded with a pointer to a MIDICTX
structure. The lower expresseion in the right watch windows displays the content of that
structure, the expression entered is: (MIDICTX*)R2

If possible, the SamVS debugger resolves symbol names from addresses and can deal with far
pointers as well. Check out ppParam in the left watches or the unfold ParamDisplayResetList
in the right one. The third column displays native type information, so you can verify to what
type your expression actually evaluates.

The legacy hex checkbox is still available and provides a quick change from hexadecimal to
unsigned decimal as a default for all values (except pointers, which are always displayed hex).

If you want to display individual fields differently, you may either pick a format from the
context menu or add a format specifier to your expression.

A format specifier starts with a # symbol and is followed by an optional repeat count and an
optional format type, which is one of:

• x – hexadecimal
• d or s – signed short
• u – unsigned short
• f – 32 Bit float

The repeat count may be placed for any expression which evolves to an address and enforces
the watch to list the requested number of elements, regardless if the expression actually
refers to an array or not.

SamVS-C V5.00 Release Notes 8
© DREAM S.A.S. 2006-2019

6 Memory View
The probably most significant change from previous habits will introduce the Memory View
dialog, formerly known as QuickView:

There only is a single field left to enter an expression and the output is only defined from this
field. Since the MemoryView takes the same expression format as the watches, they may
simply copy&pasted as required. In contrast to the watches the MemoryView supports three
different display modes, which are automatically selected from the resulting expression type.

In this case the expression refers to an array of structures of type MIDICTX at memory
address 0030:0F98. Since this is an array of structures, the chosen display format is a table.

If the expression refers to a single structure, display view changes into a list. We simply
extend the expression with an array operator to see the second entry:

If your expression does not result in a structure, the output switches to the classic hexdump.
To generate such a dump from the array of structures, simply typecast it to some scalar type,
like WORD or long. The number of displayed elements is automatically determined from the
underlying object:

Of course you may append a format specifier and override the quantity of elements.

SamVS-C V5.00 Release Notes 9
© DREAM S.A.S. 2006-2019

7 Expression Parser
Watches, MemoryView and the hover display for both C and pure assembler projects now
rely on the same, refurbished expression parser which, in turn, is aware of the complete
debug information generated during the build phase.

For this reason all these instances now behave same and use the same expression syntax
which is a subset of C expressions. The essential expression grammar looks like this:

displayexpression : expression
: expression # optcount optfmt

expression : IDENTIFIER
| INTEGER
| INTEGER : INTEGER
| P16REG
| PREFIX_PORT INTEGER
| PREFIX_IRAM INTEGER
| PREFIX_P24 INTEGER
| PREFIX_P24 IDENTIFIER
| expression '+' expression
| expression '-' expression
| expression '*' expression
| expression '/' expression
| expression '%' expression
| expression '&' expression
| expression '|' expression
| expression '^' expression
| expression '>>' expression
| expression '<<' expression
| '*' expression
| '-' expression
| '~' expression
| '(' expression ')'
| expression '.' IDENTIFIER
| expression '->' IDENTIFIER
| expression '[' expression ']'
| '(' typespec ')' expression

typespec : TYPENAME
| typespec '*'
| typespec 'far' '*'
| typespec 'const'

optcount :

| INTEGER

optfmt :

| DISPLAYFORMAT

The result of such an expression always is a reference to a memory location, where
“memory” may be an address on async bus, a port, a location in IRAM or a P16 register.
Along with that memory reference we get an exact type specifier which allows abstract
operations with the data found on that location.

Valid expressions range from simple Symbol names to more advanced expressions with
typecasts like “(long*)I:18h#4”, which effectively displays content of DR4..DR7.

SamVS-C V5.00 Release Notes 10
© DREAM S.A.S. 2006-2019

Since expression results are always interpreted as memory references, typecasting is more
graceful compared with C. For example if a structure member is referenced using an
expression like

pStruct->EmbeddedStruct.SomeWordMember

Adding #8 will display 8 elements from SomeWordMember using its type.

7.1 Lexical elements

This section briefly describes the available lexical elements from the expression grammar.

• IDENTIFIER
A potential identifier is any string starting with a letter character and only contains
letters, digits or the underscore character. It only evaluates as an IDENTIFIER if it
does not match a reserved word like const or one of the well-known types like
WORD or long.

• INTEGER
A decimal integer is any sequence of decimal digits (0..9). However, the lexer
recognizes hexadecimal and binary values as well. Hexadecimal literals need to be
prefixed with “0x” or end with a trailing “h”, like 0xABCD or 0FEDCh (please obey the
required leading decimal digit in postfix notation), binary literals use prefix “0b”
resp. a trailing “b”..

• P16REG
P16 registers use their regular names like R3, XSP or DR7, but letters need to be
uppercase.

• PREFIX_PORT
The port prefix is “P:”, the following INTEGER is the port number.

• PREFIX_IRAM
The IRAM prefix is “I:”, the following INTEGER is the IRAM address

• PREFIX_P24
The P24 prefix starts with a single quote and an number between 48..63 followed by
a colon, like “53:”, the following INTEGER is interpreted as an address inside that P24
memory.

• TYPENAME
A TYPENAME is one of these case sensitive identifiers: “unsigned” or “WORD”,
“signed” or “short”, “long” and “DWORD”.

• DISPLAYFORMAT
The display format character defines the requested formatting for that item, its one
of these:
x: hexadecimal
d or s: signed decimal
u: unsigned decimal
f: floatingpoint

SamVS-C V5.00 Release Notes 11
© DREAM S.A.S. 2006-2019

This publication neither states nor implies any warranty of any kind, including, but not limited to, implied
warrants of merchantability or fitness for a particular application. Dream assumes no responsibility for the use
of any circuitry. No circuit patent licenses are implied.
The information in this publication is believed to be accurate in all respects at the time of publication but is
subject to change without notice. Dream assumes no responsibility for errors and omissions, and disclaims
responsibility for any consequences resulting from the information included herein.

SamVS-C V5.00 Release Notes 12
© DREAM S.A.S. 2006-2019

Contact : info@dream.fr

DREAM S.A.S.

Z.I., 21140 Semur-en-Auxois, France

www.dream.fr

mailto:info@dream.fr?subject=Customer%20request%20from%20SamVS%20User's%20Manual
https://www.dream.fr/

	1 Release Notes to SamVS V5.00
	2 New User Interface
	3 Project Tree
	4 Scintilla Code Editor
	4.1 Scintilla Highlight Editor

	5 Debugging
	6 Memory View
	7 Expression Parser
	7.1 Lexical elements

